Appendix L Survey Instrument Calibration Program Training Before independently calibrating survey instruments, an individual should complete both classroom and on-the-job training as follows: - Classroom training may be in the form of lecture, videotape, or self-study and will cover the following subject areas: - Principles and practices of radiation protection - Radioactivity measurements, monitoring techniques, and the use of instruments - Mathematics and calculations basic to using and measuring radioactivity - Biological effects of radiation. - On-the-job training will be considered complete if the individual has: - Observed authorized personnel performing survey instrument calibration; and - Conducted survey meter calibrations under the supervision, and in the physical presence of an individual already authorized to perform calibrations. ## Facilities and Equipment - To reduce doses received by individuals not calibrating instruments, calibrations will be conducted in an isolated area of the facility or at times when no one else is present - Individuals conducting calibrations will wear assigned dosimetry - Individuals conducting calibrations will use a calibrated and operable survey instrument to ensure that unexpected changes in exposure rates are identified and corrected. ## Model Procedure for Calibrating Survey Instruments - A radioactive sealed source(s) will be used for calibrating survey instruments, and this source will: - Approximate a point source - Have its apparent source activity or the exposure rate at a given distance traceable by documented measurements to a standard certified to be within \pm 5% accuracy by National Institutes of Standards and Technology (NIST) - Contain a radionuclide which emits radiation of identical or similar type and energy as the sealed sources that the instrument will measure - Be strong enough to emit a radiation field that is representative of the field being emitted by the gauge. For calibration of instruments intended to measure gamma radiation, the exposure rate should be at least 30 mR/hour (7.7 microcoulomb/kilogram per hour) at 100 cm [e.g., 3.1 gigabecquerels (85 millicuries) of Cs-137 or 780 megabecquerels (21 millicuries) of Co-60]. - Inverse square and radioactive decay laws must be used to correct changes in exposure rate due to changes in distance or source decay. - record must be made of each survey meter calibration. - A single point on a survey meter scale may be considered satisfactorily calibrated if the indicated exposure rate differs from the calculated exposure rate by less than $\pm 20\%$. - There are three kinds of scales frequently used on radiation survey meters. They are calibrated either as described in ANSI N323A-1996, "American National Standard Radiation Protection Instrumentation Test and Calibration Portable Survey Instruments," or as follows: - Meters on which the user selects a linear scale must be calibrated at not fewer that two points on each scale. The points will be at approximately 1/3 and 2/3 of the decade. - Meters that have a multidecade logarithmic scale must be calibrated at one point (at the least) on each decade and not fewer than two points on one of the decades. Those points will be approximately 1/3 and 2/3 of the decade. - Meters that have an automatically ranging digital display device for indicating exposure rates must be calibrated at one point (at the least) on each decade and at no fewer than two points on one of the decades. Those points should be at approximately 1/3 and 2/3 of the decade. - Readings above 200 mR/hour (50 microcoulomb/kilogram per hour) need not be calibrated. However, higher scales should be checked for operation and approximately correct response. - Survey meter calibration reports will indicate the procedure used and the results of the calibration. The reports will include: - The owner or user of the instrument - A description of the instrument that includes the manufacturer's name, model number, serial number, and type of detector - A description of the calibration source, including the exposure rate at a specified distance on a specified date, and the calibration procedure - For each calibration point, the calculated exposure rate, the indicated exposure rate, the deduced correction factor (the calculated exposure rate divided by the indicated exposure rate), and the scale selected on the instrument - The exposure reading indicated with the instrument in the "battery check" mode (if available on the instrument) - For instruments with external detectors, the angle between the radiation flux field and the detector (i.e., parallel or perpendicular) - For instruments with internal detectors, the angle between radiation flux field and a specified surface of the instrument - For detectors with removable shielding, an indication whether the shielding was in place or removed during the calibration procedure - The exposure rate from a check source, if used - The signature of the individual who performed the calibration and the date on which the calibration was performed. - The following information will be attached to the instrument as a calibration sticker or tag: - The source that was used to calibrate the instrument - The proper deflection in the battery check mode (unless this is clearly indicated on the instrument) - For each scale or decade not calibrated, an indication that the scale or decade was checked only for function but not calibrated - The date of calibration and the next calibration due date - The apparent exposure rate from the check source, if used. Nebraska Health and Human Services $\begin{tabular}{l} Appendix L \end{tabular}$